Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation.

Identifieur interne : 003200 ( Main/Exploration ); précédent : 003199; suivant : 003201

Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation.

Auteurs : Monika Brinker [Allemagne] ; Mikael Brosché ; Basia Vinocur ; Atef Abo-Ogiala ; Payam Fayyaz ; Dennis Janz ; Eric A. Ottow ; Andreas D. Cullmann ; Joachim Saborowski ; Jaakko Kangasj Rvi ; Arie Altman ; Andrea Polle

Source :

RBID : pubmed:20959419

Descripteurs français

English descriptors

Abstract

To investigate early salt acclimation mechanisms in a salt-tolerant poplar species (Populus euphratica), the kinetics of molecular, metabolic, and physiological changes during a 24-h salt exposure were measured. Three distinct phases of salt stress were identified by analyses of the osmotic pressure and the shoot water potential: dehydration, salt accumulation, and osmotic restoration associated with ionic stress. The duration and intensity of these phases differed between leaves and roots. Transcriptome analysis using P. euphratica-specific microarrays revealed clusters of coexpressed genes in these phases, with only 3% overlapping salt-responsive genes in leaves and roots. Acclimation of cellular metabolism to high salt concentrations involved remodeling of amino acid and protein biosynthesis and increased expression of molecular chaperones (dehydrins, osmotin). Leaves suffered initially from dehydration, which resulted in changes in transcript levels of mitochondrial and photosynthetic genes, indicating adjustment of energy metabolism. Initially, decreases in stress-related genes were found, whereas increases occurred only when leaves had restored the osmotic balance by salt accumulation. Comparative in silico analysis of the poplar stress regulon with Arabidopsis (Arabidopsis thaliana) orthologs was used as a strategy to reduce the number of candidate genes for functional analysis. Analysis of Arabidopsis knockout lines identified a lipocalin-like gene (AtTIL) and a gene encoding a protein with previously unknown functions (AtSIS) to play roles in salt tolerance. In conclusion, by dissecting the stress transcriptome of tolerant species, novel genes important for salt endurance can be identified.

DOI: 10.1104/pp.110.164152
PubMed: 20959419
PubMed Central: PMC2996017


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation.</title>
<author>
<name sortKey="Brinker, Monika" sort="Brinker, Monika" uniqKey="Brinker M" first="Monika" last="Brinker">Monika Brinker</name>
<affiliation wicri:level="4">
<nlm:affiliation>Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, 37077 Goettingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, 37077 Goettingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
<author>
<name sortKey="Brosche, Mikael" sort="Brosche, Mikael" uniqKey="Brosche M" first="Mikael" last="Brosché">Mikael Brosché</name>
</author>
<author>
<name sortKey="Vinocur, Basia" sort="Vinocur, Basia" uniqKey="Vinocur B" first="Basia" last="Vinocur">Basia Vinocur</name>
</author>
<author>
<name sortKey="Abo Ogiala, Atef" sort="Abo Ogiala, Atef" uniqKey="Abo Ogiala A" first="Atef" last="Abo-Ogiala">Atef Abo-Ogiala</name>
</author>
<author>
<name sortKey="Fayyaz, Payam" sort="Fayyaz, Payam" uniqKey="Fayyaz P" first="Payam" last="Fayyaz">Payam Fayyaz</name>
</author>
<author>
<name sortKey="Janz, Dennis" sort="Janz, Dennis" uniqKey="Janz D" first="Dennis" last="Janz">Dennis Janz</name>
</author>
<author>
<name sortKey="Ottow, Eric A" sort="Ottow, Eric A" uniqKey="Ottow E" first="Eric A" last="Ottow">Eric A. Ottow</name>
</author>
<author>
<name sortKey="Cullmann, Andreas D" sort="Cullmann, Andreas D" uniqKey="Cullmann A" first="Andreas D" last="Cullmann">Andreas D. Cullmann</name>
</author>
<author>
<name sortKey="Saborowski, Joachim" sort="Saborowski, Joachim" uniqKey="Saborowski J" first="Joachim" last="Saborowski">Joachim Saborowski</name>
</author>
<author>
<name sortKey="Kangasj Rvi, Jaakko" sort="Kangasj Rvi, Jaakko" uniqKey="Kangasj Rvi J" first="Jaakko" last="Kangasj Rvi">Jaakko Kangasj Rvi</name>
</author>
<author>
<name sortKey="Altman, Arie" sort="Altman, Arie" uniqKey="Altman A" first="Arie" last="Altman">Arie Altman</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20959419</idno>
<idno type="pmid">20959419</idno>
<idno type="doi">10.1104/pp.110.164152</idno>
<idno type="pmc">PMC2996017</idno>
<idno type="wicri:Area/Main/Corpus">003032</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003032</idno>
<idno type="wicri:Area/Main/Curation">003032</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003032</idno>
<idno type="wicri:Area/Main/Exploration">003032</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation.</title>
<author>
<name sortKey="Brinker, Monika" sort="Brinker, Monika" uniqKey="Brinker M" first="Monika" last="Brinker">Monika Brinker</name>
<affiliation wicri:level="4">
<nlm:affiliation>Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, 37077 Goettingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, 37077 Goettingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
<author>
<name sortKey="Brosche, Mikael" sort="Brosche, Mikael" uniqKey="Brosche M" first="Mikael" last="Brosché">Mikael Brosché</name>
</author>
<author>
<name sortKey="Vinocur, Basia" sort="Vinocur, Basia" uniqKey="Vinocur B" first="Basia" last="Vinocur">Basia Vinocur</name>
</author>
<author>
<name sortKey="Abo Ogiala, Atef" sort="Abo Ogiala, Atef" uniqKey="Abo Ogiala A" first="Atef" last="Abo-Ogiala">Atef Abo-Ogiala</name>
</author>
<author>
<name sortKey="Fayyaz, Payam" sort="Fayyaz, Payam" uniqKey="Fayyaz P" first="Payam" last="Fayyaz">Payam Fayyaz</name>
</author>
<author>
<name sortKey="Janz, Dennis" sort="Janz, Dennis" uniqKey="Janz D" first="Dennis" last="Janz">Dennis Janz</name>
</author>
<author>
<name sortKey="Ottow, Eric A" sort="Ottow, Eric A" uniqKey="Ottow E" first="Eric A" last="Ottow">Eric A. Ottow</name>
</author>
<author>
<name sortKey="Cullmann, Andreas D" sort="Cullmann, Andreas D" uniqKey="Cullmann A" first="Andreas D" last="Cullmann">Andreas D. Cullmann</name>
</author>
<author>
<name sortKey="Saborowski, Joachim" sort="Saborowski, Joachim" uniqKey="Saborowski J" first="Joachim" last="Saborowski">Joachim Saborowski</name>
</author>
<author>
<name sortKey="Kangasj Rvi, Jaakko" sort="Kangasj Rvi, Jaakko" uniqKey="Kangasj Rvi J" first="Jaakko" last="Kangasj Rvi">Jaakko Kangasj Rvi</name>
</author>
<author>
<name sortKey="Altman, Arie" sort="Altman, Arie" uniqKey="Altman A" first="Arie" last="Altman">Arie Altman</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (genetics)</term>
<term>Gas Chromatography-Mass Spectrometry (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Knockout Techniques (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Osmotic Pressure (MeSH)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Roots (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Sodium Chloride (metabolism)</term>
<term>Stress, Physiological (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (génétique)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Chlorure de sodium (métabolisme)</term>
<term>Chromatographie gazeuse-spectrométrie de masse (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Pression osmotique (MeSH)</term>
<term>Racines de plante (métabolisme)</term>
<term>Stress physiologique (génétique)</term>
<term>Techniques de knock-out de gènes (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Populus</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Populus</term>
<term>Stress physiologique</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chlorure de sodium</term>
<term>Feuilles de plante</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gas Chromatography-Mass Spectrometry</term>
<term>Gene Expression Profiling</term>
<term>Gene Knockout Techniques</term>
<term>Genes, Plant</term>
<term>Kinetics</term>
<term>Osmotic Pressure</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Chromatographie gazeuse-spectrométrie de masse</term>
<term>Cinétique</term>
<term>Gènes de plante</term>
<term>Pression osmotique</term>
<term>Techniques de knock-out de gènes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To investigate early salt acclimation mechanisms in a salt-tolerant poplar species (Populus euphratica), the kinetics of molecular, metabolic, and physiological changes during a 24-h salt exposure were measured. Three distinct phases of salt stress were identified by analyses of the osmotic pressure and the shoot water potential: dehydration, salt accumulation, and osmotic restoration associated with ionic stress. The duration and intensity of these phases differed between leaves and roots. Transcriptome analysis using P. euphratica-specific microarrays revealed clusters of coexpressed genes in these phases, with only 3% overlapping salt-responsive genes in leaves and roots. Acclimation of cellular metabolism to high salt concentrations involved remodeling of amino acid and protein biosynthesis and increased expression of molecular chaperones (dehydrins, osmotin). Leaves suffered initially from dehydration, which resulted in changes in transcript levels of mitochondrial and photosynthetic genes, indicating adjustment of energy metabolism. Initially, decreases in stress-related genes were found, whereas increases occurred only when leaves had restored the osmotic balance by salt accumulation. Comparative in silico analysis of the poplar stress regulon with Arabidopsis (Arabidopsis thaliana) orthologs was used as a strategy to reduce the number of candidate genes for functional analysis. Analysis of Arabidopsis knockout lines identified a lipocalin-like gene (AtTIL) and a gene encoding a protein with previously unknown functions (AtSIS) to play roles in salt tolerance. In conclusion, by dissecting the stress transcriptome of tolerant species, novel genes important for salt endurance can be identified.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20959419</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>06</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>154</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2010</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation.</ArticleTitle>
<Pagination>
<MedlinePgn>1697-709</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.110.164152</ELocationID>
<Abstract>
<AbstractText>To investigate early salt acclimation mechanisms in a salt-tolerant poplar species (Populus euphratica), the kinetics of molecular, metabolic, and physiological changes during a 24-h salt exposure were measured. Three distinct phases of salt stress were identified by analyses of the osmotic pressure and the shoot water potential: dehydration, salt accumulation, and osmotic restoration associated with ionic stress. The duration and intensity of these phases differed between leaves and roots. Transcriptome analysis using P. euphratica-specific microarrays revealed clusters of coexpressed genes in these phases, with only 3% overlapping salt-responsive genes in leaves and roots. Acclimation of cellular metabolism to high salt concentrations involved remodeling of amino acid and protein biosynthesis and increased expression of molecular chaperones (dehydrins, osmotin). Leaves suffered initially from dehydration, which resulted in changes in transcript levels of mitochondrial and photosynthetic genes, indicating adjustment of energy metabolism. Initially, decreases in stress-related genes were found, whereas increases occurred only when leaves had restored the osmotic balance by salt accumulation. Comparative in silico analysis of the poplar stress regulon with Arabidopsis (Arabidopsis thaliana) orthologs was used as a strategy to reduce the number of candidate genes for functional analysis. Analysis of Arabidopsis knockout lines identified a lipocalin-like gene (AtTIL) and a gene encoding a protein with previously unknown functions (AtSIS) to play roles in salt tolerance. In conclusion, by dissecting the stress transcriptome of tolerant species, novel genes important for salt endurance can be identified.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Brinker</LastName>
<ForeName>Monika</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, 37077 Goettingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brosché</LastName>
<ForeName>Mikael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vinocur</LastName>
<ForeName>Basia</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Abo-Ogiala</LastName>
<ForeName>Atef</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fayyaz</LastName>
<ForeName>Payam</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Janz</LastName>
<ForeName>Dennis</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ottow</LastName>
<ForeName>Eric A</ForeName>
<Initials>EA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cullmann</LastName>
<ForeName>Andreas D</ForeName>
<Initials>AD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Saborowski</LastName>
<ForeName>Joachim</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kangasjärvi</LastName>
<ForeName>Jaakko</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Altman</LastName>
<ForeName>Arie</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Polle</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>10</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008401" MajorTopicYN="N">Gas Chromatography-Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055786" MajorTopicYN="N">Gene Knockout Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009997" MajorTopicYN="N">Osmotic Pressure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20959419</ArticleId>
<ArticleId IdType="pii">pp.110.164152</ArticleId>
<ArticleId IdType="doi">10.1104/pp.110.164152</ArticleId>
<ArticleId IdType="pmc">PMC2996017</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:651-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res. 2001 Apr;77(2):123-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11355567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Oct;224(5):1103-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16705403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):317-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Sep;167(3):645-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2001;8(6):625-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11747616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Jul;24(7):729-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2003 Dec;31(Pt 6):1390-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14641070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Apr;51(345):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Jul;30(7):796-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Oct;6(5):441-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2000 Nov;18(11):1157-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11062433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):638-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16565295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Feb;143(2):876-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2005 Apr;16(2):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 May;9(5):244-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15130550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1996 Aug;10(2):375-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8771791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Bioinformatics. 2008;2008:420747</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19956698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:247-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Apr;140(4):1437-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16500996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Aug;133(4):651-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18724408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Oct 18;1482(1-2):9-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11058743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Apr 24;517(1-3):129-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12062422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Aug;31(3):279-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12164808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1999 Oct;209(4):377-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10550618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20637123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):84-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(4):R49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17408486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1697-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(5):1097-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16510518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1902-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Cell. 2005 Oct;97(10):749-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16171457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Oct;139(2):790-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16183846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Jun;52(359):1361-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11432955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Jan 1;417(1):257-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18754756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Dec;44(5):826-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16297073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(2):221-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17075077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Dec;10(12):615-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16280254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1965 Apr 16;148(3668):339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17832103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Apr;11(3):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):2017-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2000;132:365-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 May;43(1):103-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10949377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Aug;35(4):452-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12904208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Mar;49(5):810-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17257168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Jun;73(3):251-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20157764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Jul;55(5):663-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Dec;148(4):1925-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18849483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Apr;50(2):347-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17376166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Mar;24(3):265-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14704136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jun;29(6):1033-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008;8:86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18671872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11309499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1762-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Oct;36(2):141-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14535880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(12):R101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356264</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Basse-Saxe</li>
</region>
<settlement>
<li>Göttingen</li>
</settlement>
<orgName>
<li>Université de Göttingen</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Abo Ogiala, Atef" sort="Abo Ogiala, Atef" uniqKey="Abo Ogiala A" first="Atef" last="Abo-Ogiala">Atef Abo-Ogiala</name>
<name sortKey="Altman, Arie" sort="Altman, Arie" uniqKey="Altman A" first="Arie" last="Altman">Arie Altman</name>
<name sortKey="Brosche, Mikael" sort="Brosche, Mikael" uniqKey="Brosche M" first="Mikael" last="Brosché">Mikael Brosché</name>
<name sortKey="Cullmann, Andreas D" sort="Cullmann, Andreas D" uniqKey="Cullmann A" first="Andreas D" last="Cullmann">Andreas D. Cullmann</name>
<name sortKey="Fayyaz, Payam" sort="Fayyaz, Payam" uniqKey="Fayyaz P" first="Payam" last="Fayyaz">Payam Fayyaz</name>
<name sortKey="Janz, Dennis" sort="Janz, Dennis" uniqKey="Janz D" first="Dennis" last="Janz">Dennis Janz</name>
<name sortKey="Kangasj Rvi, Jaakko" sort="Kangasj Rvi, Jaakko" uniqKey="Kangasj Rvi J" first="Jaakko" last="Kangasj Rvi">Jaakko Kangasj Rvi</name>
<name sortKey="Ottow, Eric A" sort="Ottow, Eric A" uniqKey="Ottow E" first="Eric A" last="Ottow">Eric A. Ottow</name>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<name sortKey="Saborowski, Joachim" sort="Saborowski, Joachim" uniqKey="Saborowski J" first="Joachim" last="Saborowski">Joachim Saborowski</name>
<name sortKey="Vinocur, Basia" sort="Vinocur, Basia" uniqKey="Vinocur B" first="Basia" last="Vinocur">Basia Vinocur</name>
</noCountry>
<country name="Allemagne">
<region name="Basse-Saxe">
<name sortKey="Brinker, Monika" sort="Brinker, Monika" uniqKey="Brinker M" first="Monika" last="Brinker">Monika Brinker</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003200 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003200 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20959419
   |texte=   Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20959419" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020